EFFECT OF POULTRY LITTER AS AN ORGANIC FERTILIZER, IN WATER QUALITY, PARASITIC ABUNDANCE, AND GROWTH NILE TILAPIA

  • Lidiany Doreto CAVALCANTI Universidade Federal da Grande Dourados – UFGD, Faculdade de Ciências Biológicas e Ambientais, Núcleo de Pesquisa em Aquicultura - NUPAQ. http://orcid.org/0000-0001-8846-9417
  • Élida Jeronimo GOUVEIA Universidade Federal da Grande Dourados – UFGD, Faculdade de Ciências Biológicas e Ambientais, Núcleo de Pesquisa em Aquicultura - NUPAQ. http://orcid.org/0000-0001-9631-7608
  • Emanuelly Costa Ventura SOUZA Universidade Federal da Grande Dourados – UFGD, Faculdade de Ciências Biológicas e Ambientais, Núcleo de Pesquisa em Aquicultura - NUPAQ. http://orcid.org/0000-0003-1529-2977
  • Juliana Rosa CARRIJO-MAUAD Universidade Federal da Grande Dourados – UFGD, Faculdade de Ciências Biológicas e Ambientais, Núcleo de Pesquisa em Aquicultura - NUPAQ. http://orcid.org/0000-0003-3901-1105
  • Márcia Regina RUSSO Universidade Federal da Grande Dourados – UFGD, Faculdade de Ciências Biológicas e Ambientais, Núcleo de Pesquisa em Aquicultura - NUPAQ. http://orcid.org/0000-0003-1526-7130

Abstract

Nile tilapia feed on plankton in natural environments. This food source can be increased in ponds through fertilization and can reduce feed expenses or improve fish performance when used as supplementary food. Organic fertilization is an alternative to commercial fertilization; however, its use increases concerns regarding water quality and sanitary aspects. This study aimed to evaluate the effects of the use of poultry litter as organic fertilizer on the physical and chemical parameters of water, gill ectoparasite metazoan abundance, and growth of Nile tilapia (Oreochromis niloticus) during the culture cycle lasting 240 days. Four earthen ponds, two fertilized with poultry litter and two non-fertilized ponds, as fertilized and non-fertilized treatments, respectively, were used. Stocking density was 3 fish per m2 with an average initial weight of 0.64 ± 0.15 g. The mean water quality values and the growth performance parameters of Nile tilapia did not show significant differences between the two treatments. The gill parasites found in the fish belonged to the class Monogenea, comprising two genera, Cichlidogyrus and Scutogyrus, with significant differences between treatments. The non-fertilized treatment showed a high abundance of parasites throughout the culture cycle months, with peak abundance in the months with low concentrations of dissolved oxygen in the water.

References

Adebayo, O.T.; Fagbenro, O.A.; Jegede, T. 2004. Evaluation of Cassia fistula meal as a replacement for soybean meal in practical diets of Oreochromis niloticus fingerlings. Aquaculture Nutrition, 10(2): 99-104. https://doi.org/10.1111/j.1365-2095.2003.00286.x.

Adeshina, I.; Abdel-Tawwab, M.; Tijjani, Z.A.; Tiamiyu, L.O.; Jahanbakhshi, A. 2021. Dietary Tridax procumbens leaves extract stimulated growth, antioxidants, immunity, and resistance of Nile tilapia, Oreochromis niloticus, to monogenean parasitic infection. Aquaculture (Amsterdam, Netherlands), 532: 736047. https://doi.org/10.1016/j.aquaculture.2020.736047.

Agra, J.U.M.; Klink, J.M.E.; Rodrigues, G.G. 2012. Monitoramento da piscicultura em reservatórios: Uma abordagem ecológica. Revista Brasileira de Geografia Física, 6: 1457-1472.

Akoll, P.; Konecny, R.; Mwanja, W.W.; Nattabi, J.K.; Agoe, C.; Schiemer, F. 2012. Parasite fauna of farmed Nile tilapia (Oreochromis niloticus) and African catfish (Clarias gariepinus) in Uganda. Parasitology Research, 110(1): 315-323. https://doi.org/10.1007/s00436-011-2491-4.

Baccarin, A.E.; Camargo, A.F.M. 2005. Characterization and evaluation of the feed management on the effluents of Nile tilapia (Oreochromis niloticus) culture. Brazilian Archives of Biology and Technology, 48(1): 81-90. https://doi.org/10.1590/S1516-89132005000100012.

Bhatnagar, A.; Garg, S.K. 2000. Causative factors of fish mortality in still water fish ponds under sub-tropical conditions. Aquaculture (Amsterdam, Netherlands), 1(2): 91-96.

Boyd, C.E.; Tucker, C.S. 1998. Pond aquaculture water quality management. Boston, USA: Kluwer Academic Publisher. 700p.

Braccini, G.L.; Natali, M.R.M.; Ribeiro, R.P.; Mori, R.H.; Riggo, R.; Oliveira, C.A.; Hildebrandt, J.F.; Vargas, L. 2013. Morpho-functional response of Nile tilapia (Oreochromis niloticus) to a homeopathic complex. Homeopathy, 102(4): 233-241. https://doi.org/10.1016/j.homp.2013.06.002.

Bush, A.O.; Lafferty, K.D.; Lotz, J.M.; Shostak, W. 1997. Parasitology meets ecology on its own terms: Margolis et al. revisited. The Journal of Parasitology, 83(4): 575-583. https://doi.org/10.2307/3284227.

Cyrino, J.E.P.; Bicudo, Á.J.A.; Sado, R.Y.; Borghesi, R.; Dairik, J.K. 2010. A piscicultura e o ambiente: o uso de alimentos ambientalmente corretos em piscicultura. Revista Brasileira de Zootecnia, 39(suppl spe): 68-87. https://doi.org/10.1590/S1516-35982010001300009.

Deka, P.M.; Tamuli, K.K.; Bhagabati, S.K.; Borah, S.; Nath, K.D.; Das, P.; Chetia, B.R.; Yadav, A.K.; Mandal, S.C. 2018. Comparative efficacy of different doses of pig dung on the growth performance and survival of Indian major carps fingerlings in rain-fed pond ecosystem. Journal of Entomology and Zoology Studies, 6(1): 594-601.

Dezfuli, B.S.; Giari, L.; Simoni, E.; Menegatti, R.; Shinn, A.P.; Manera, M. 2007. Gill histopathology of cultured European sea bass, Dicentrarchus labrax (L.), infected with Diplectanum aequans (Wagener 1857) Diesing 1958 (Diplectanidae: Monogenea). Parasitology Research, 100(4): 707-713. https://doi.org/10.1007/s00436-006-0343-4.

Dhawan, A.; Toor, H.S. 1989. Impact of organic manures or supplementary diet on plankton production and growth and fecundity of an Indian major carp, Cirrhina mrigala (Ham.), in fish ponds. Biological Wastes, 29(4): 289-297. https://doi.org/10.1016/0269-7483(89)90020-7.

Esteves, F.A. 1998. Fundamentos de limnologia. 2 ed. Rio de Janeiro: Interciencia. 226p.

FAO – Food and Agriculture Organization of the United Nations 2010. The state of world fisheries and aquaculture - Meeting the Sustainable Development Goals. Rome: FAO. 89p.

FAO – Food and Agriculture Organization of the United Nations 2018. The state of world fisheries and aquaculture - Meeting the Sustainable Development Goal. Rome: FAO. 210p.

Figueiró, C.S.M.; Oliveira, D.B.; Russo, M.R.; Caires, A.R.L.; Rojas, S.S. 2018. Fish farming water quality monitored by optical analysis: the potential application of UV–Vis absorption and fluorescence spectroscopy. Aquaculture, 490: 91-97. https://doi.org/10.1016/j.aquaculture.2018.02.027.

Figueredo, C.C.; Giani, A. 2005. Ecological interactions between Nile tilapia (Oreochromis niloticus, L.) and the phytoplanktonic community of the Furnas Reservoir (Brazil). Freshwater Biology, 50(8): 1391-1403. https://doi.org/10.1111/j.1365-2427.2005.01407.x.

Garg, S.K.; Bhatnagar, A. 1999. Effect of different doses of organic fertilizer (cow dung) on pond productivity and fish biomass in still water ponds. Journal of Applied Ichthyology, 15(1): 10-18. https://doi.org/10.1046/j.1439-0426.1999.00129.x.

Gopalakannan, A.; Arul, V. 2006. Immunomodulatory effects of dietary intake of chitin, chitosan and levamisole on the immune system of Cyprinus carpio and control of Aeromonas hydrophila infection in ponds. Aquaculture, 255(1-4): 179-187. https://doi.org/10.1016/j.aquaculture.2006.01.012.

Green, B.W.; Phelps, R.P.; Alvarenga, H.R. 1989. The effect of manures and chemical fertilizers on the production of Oreochromis niloticus in earthen ponds. Aquaculture (Amsterdam, Netherlands), 76(1-2): 37-42. https://doi.org/10.1016/0044-8486(89)90249-4.

Haobijam, J.W.; Ghosh, S. 2018. Integrated pig-fish farming: a case study in imphal west district of Manipur. The Pharma Innovation Journal, 7(1): 495-499.

Hossain, M.K.; Islam, K.T.; Hossain, M.D.; Rahman, M.H. 2011. Environmental impact assessment of fish diseases on fish production. Journal of Science Foundation, 9(1-2): 125-131. https://doi.org/10.3329/jsf.v9i1-2.14655.

Jerônimo, G.; Pádua, S.B.; Bampi, D.; Gonçalves, E.; Garcia, P.; Ishikawa, M.M.; Martins, M.L. 2014. Haematological and histopathological analysis in South American fish Piaractus mesopotamicus parasitized by monogenean (Dactylogyridae). Brazilian Journal of Biology, 74(4): 1000-1006. https://doi.org/10.1590/1519-6984.09513.

Jerônimo, G.T.; Speck, G.M.; Cechinel, M.M.; Gonçalves, E.L.T.; Martins, M.L. 2011. Seasonal variation on the ectoparasitic communities of Nile tilapia cultured in three regions in southern Brazil. Brazilian Journal of Biology = Revista Brasileira de Biologia, 71(2): 365-373. https://doi.org/10.1590/S1519-69842011000300005.

Kaatz, S.E.; Morris, J.E.; Rudacille, J.B.; Johnson, J.A.; Clayton, R.D. 2011. Role of organic fertilizers in walleye (Sander vitreus) production in plastic-lined culture ponds. Aquaculture Research, 42(4): 490-498. https://dx.doi.org/10.1111/j.1365-2109.2010.02644.x.

Kiron, V. 2012. Fish immune system and its nutritional modulation for preventive health care. Animal Feed Science and Technology, 173(1): 111-133. https://doi.org/10.1016/j.anifeedsci.2011.12.015.

Kumar, A.; Kumari, M.; Dhami, T. 2019. Effect of different organic manure on the growth of Amur carp (Cyprinus carpio haematopterus) fingerlings with supplementary feed in the tarai region of Uttarakhand. Journal of Entomology and Zoology Studies, 7(2): 889-894.

Kumar, M.S.; Binh, T.T.; Luu, L.T.; Clarke, S.M. 2005. Evaluation of fish production using organic and inorganic fertilizer: application to grass carp polyculture. Journal of Applied Aquaculture, 17(1): 19-34. https://doi.org/10.1300/J028v17n01_02.

Landolt, M.L. 1989. The relationship between diet and the immune response of fish. Aquaculture (Amsterdam, Netherlands), 79(1-4): 193-206. https://doi.org/10.1016/0044-8486(89)90461-4.

Lanes, C.F.C.; Bolla, S.; Fernandes, J.M.O.; Nicolaisen, O.; Kiron, V.; Babiak, I. 2012. Nucleotide enrichment of live feed: a promising protocol for rearing of Atlantic cod Gadus morhua larvae. Marine Biotechnology (New York, N.Y.), 14(5): 544-558. https://doi.org/10.1007/s10126-012-9458-z.

Macedo, C.F.; Sipaúba-Tavares, L.H. 2010. Eutrofização e qualidade da água na piscicultura: consequências e recomendações. Boletim do Instituto de Pesca, 36(2): 149-163.

Martin, S.A.; Król, E. 2017. Nutrigenomics and immune function in fish: new insights from omics technologies. Developmental and Comparative Immunology, 75: 86-98. https://doi.org/10.1016/j.dci.2017.02.024.

Martins, A.P.L.; Reissmann, C.B.; Favaretto, N.; Boeger, M.R.T.; Oliveira, E.B. 2007. Capacidade da Typha dominguensis na fitorremediação de efluentes de tanques de piscicultura na Bacia do Iraí – Paraná. Revista Brasileira de Engenharia Agrícola e Ambiental, 11(3): 324-330. https://doi.org/10.1590/S1415-43662007000300013.

Matos, L.V.; Oliveira, M.I.B.; Gomes, A.L.S.; Silva, G.S. 2017. Morphological and histochemical changes associated with massive infection by Neoechinorhynchus buttnerae (Acanthocephala: Neoechinorhynchidae) in the farmed freshwater fish Colossoma macropomum Cuvier, 1818 from the Amazon State, Brazil. Parasitology Research, 116(3): 1029-1037. https://doi.org/10.1007/s00436-017-5384-3.

McIntyre, A.M.; Guéguen, C. 2013. Binding interactions of algal-derived dissolved organic matter with metal ions. Chemosphere, 90(2): 620-626. https://doi.org/10.1016/j.chemosphere.2012.08.057.
Mo, W.Y.; Cheng, Z.; Choi, W.M.; Man, Y.B.; Liu, Y.; Wong, M.H. 2014. Application of food waste based diets in polyculture of low trophic level fish: effects on fish growth, water quality and plankton density. Marine Pollution Bulletin, 85(2): 803-809. https://doi.org/10.1016/j.marpolbul.2014.01.020.

Moreira, R.L.; Silveira, L.P.; Teixeira, E.G.; Moreira, A.G.L.; Moura, P.S.D.; Farias, W.R.L. 2012. Growth and gastrointestinal indices in Nile tilapia fed with different diets. Acta Scientiarum. Animal Sciences, 34(3): 223-229. https://doi.org/10.4025/actascianimsci.v34i3.13327.

Mungkung, R.; Aubin, J.; Prihadi, T.H.; Slembrouck, J.; Van Der Werf, H.M.G.; Legendre, M. 2013. Life cycle assessment for environmentally sustainable aquaculture management: a case study of combined aquaculture systems for carp and tilapia. Journal of Cleaner Production, 57: 249-256. https://doi.org/10.1016/j.jclepro.2013.05.029.

Noor, Z.; Noor, M.; Khan, S.A.; Younas, W.; Ualiyeva, D.; Hassan, Z.; Yousafzai, A.M. 2021. Dietary supplementations of methionine improve growth performances, innate immunity, digestive enzymes, and antioxidant activities of rohu (Labeo rohita). Fish Physiology and Biochemistry, 47: 451-464. https://doi.org/10.1007/s10695-021-00924-x.

Pádua, S.B.; Ishikawa, M.M.; Kasai, R.Y.D.; Jerônimo, G.T.; Carrijo-Mauad, J.R. 2012. Parasitic infestations in hybrid surubim catfish fry (Pseudoplatystoma reticulatum x P. corruscans). Brazilian Journal Veterinary Medicine, 34(3): 235-240.

Pádua, S.B.; Martins, M.L.; Valladão, G.M.R.; Utz, L.; Zara, F.J.; Ishikawa, M.M.; Belo, M.A.A. 2016. Host-parasite relationship during Epistylis sp. (Ciliophora: Epistylididae) infestation in farmed cichlid and pimelodid fish. Pesquisa Agropecuária Brasileira, 51(5): 520-526. https://doi.org/10.1590/S0100-204X2016000500012.

Pariselle, A.; Bilong, C.F.B.; Euzet, L. 2003. Four new species of Cichlidogyrus Paperna, 1960 (Monogenea, Ancyrocephalidae), all gill parasites from African mouthbreeder tilapias of the genera Sarotherodon and Oreochromis (Pisces, Cichlidae), with a redescription of C. thurstonae Ergens, 1981. Systematic Parasitology, 56: 201-210. https://doi.org/10.1023/B:SYPA.0000003807.27452.bd.

PeixeBR – Associação Brasileira da Piscicultura. 2019. Anuário Brasileiro da Piscicultura PEIXE BR 2019. São Paulo: PeixeBR. 148p. Available at: Accessed: May 19, 2019.

R Core Team. 2016. R: a language and environment for statistical computing [online]. Vienna, Austria: R Foundation for Statistical Computing. URL:

Reynolds, M.; Hockley, F.A.; Wilson, C.A.M.E.; Cable, J. 2019. Assessing the effects of water flow rate on parasite transmission amongst a social host. Hydrobiologia, 830: 201-212. https://doi.org/10.1007/s10750-018-3863-x.

Rosa, J.; Noleto, R.B.; Ribeiro, M.O. 2014. Avaliação do efeito substitutivo de ração por adubação orgânica na alimentação em alevinos de Tilápia (Oreochromis niloticus). Revista Luminária, 16(2): 120-130.

Sathish, S.; Chidambaram, P.; Uma, A.; Yuvarajan, P. 2021. Prevalence of parasites in tilapia farms and their management practices in Tamil Nadu, India. Journal of Entomology and Zoology Studies, 9(2): 678-689.

Xu, D.H.; Shoemaker, C.A.; Klesius, P.H. 2007. Evaluation of the link between gyrodactylosis and streptococcosis of Nile tilapia, Oreochromis niloticus (L.). Journal of Fish Diseases, 30(4): 233-238. https://doi.org/10.1111/j.1365-2761.2007.00806.x.

Zahid, A.; Khan, N.; Nasir, M.; Ali, M.W. 2013. Effect of artificial feed and fertilization of ponds on growth and body composition of genetically improved farmed tilapia. Pakistan Journal of Zoology, 45(3): 667-671.

Zhang, S.; Zhi, T.; Xu, X.; Zheng, Y.; Bilong, C.F.B.; Pariselle, A.; Yang, T. 2019. Monogenean fauna of alien tilapias (Cichlidae) in South China. Parasite (Paris, France), 26(4): 2-16. https://doi.org/10.1051/parasite/2019003.
Published
2021-09-13
How to Cite
CAVALCANTI, Lidiany Doreto et al. EFFECT OF POULTRY LITTER AS AN ORGANIC FERTILIZER, IN WATER QUALITY, PARASITIC ABUNDANCE, AND GROWTH NILE TILAPIA. Boletim do Instituto de Pesca, [S.l.], v. 47, sep. 2021. ISSN 1678-2305. Available at: <https://www.institutodepesca.org/boletim/index.php/bip/article/view/1596>. Date accessed: 28 nov. 2021. doi: https://doi.org/10.20950/1678-2305/bip.2021.47.e622.
Section
Short Communication